

Available online at www.sciencedirect.com

Biochemical and Biophysical Research Communications 300 (2003) 16–22

www.elsevier.com/locate/ybbrc

Reversibility of established diabetic glomerulopathy by anti-TGF- β antibodies in *dbldb* mice

Sheldon Chen, M. Carmen Iglesias-de la Cruz, Belinda Jim, Soon Won Hong, Motohide Isono, and Fuad N. Ziyadeh*

Renal-Electrolyte and Hypertension Division, Penn Center for the Molecular Studies of Kidney Diseases, Department of Medicine, University of Pennsylvania, 700 Clinical Research Building, 415 Curie Boulevard, Philadelphia, PA 19104, USA

Received 21 October 2002

Abstract

Treatment with a neutralizing anti-transforming growth factor- β (TGF- β) antibody can prevent the development of diabetic nephropathy in the db/db mouse, a model of type 2 diabetes. However, it is unknown whether anti-TGF- β therapy can reverse the histological lesions of diabetic glomerulopathy once they are established. Diabetic db/db mice and their non-diabetic db/m littermates were allowed to grow until 16 weeks of age, by which time the db/db mice had developed glomerular basement membrane (GBM) thickening and mesangial matrix expansion. The mice were then treated with an irrelevant control IgG or a panselective, neutralizing anti-TGF- β antibody for eight more weeks. Compared with control db/m mice, the db/db mice treated with IgG had developed increased GBM width (16.64 ± 0.80 nm vs. 21.55 ± 0.78 nm, P < 0.05) and increased mesangial matrix fraction ($4.01 \pm 0.81\%$ of total glomerular area vs. $9.55 \pm 1.04\%$, P < 0.05). However, the db/db mice treated with anti-TGF- β antibody showed amelioration of GBM thickening (18.40 ± 0.72 nm, P < 0.05) vs. db/db-IgG) and mesangial matrix accumulation ($6.32 \pm 1.79\%$, P < 0.05 vs. db/db-IgG). Our results demonstrate that inhibiting renal TGF- β activity can partially reverse the GBM thickening and mesangial matrix expansion in this mouse model of type 2 diabetes. Anti-TGF- β regimens would be useful in the treatment of diabetic nephropathy.

© 2002 Elsevier Science (USA). All rights reserved.

Keywords: Glomerular basement membrane thickening; Mesangial matrix expansion; Type 2 diabetes; Reversal

The pathologic lesions of diabetic nephropathy are well described [1]. They include cellular hypertrophy, glomerular basement membrane (GBM) and tubular basement membrane (TBM) thickening, tubulointerstitial fibrosis, and mesangial expansion with extracellular matrix, also known as glomerulosclerosis. These lesions, once established, were thought to be irreversible [2]. But the extracellular matrix does undergo remodeling and its quantity is determined by the rates of production and degradation [3]. In diabetic kidney disease, production of extracellular matrix outstrips degradation, and matrix proteins accumulate in the glomerular and tubulointerstitial compartments to manifest as glomerulosclerosis and tubulointerstitial fibrosis.

* Corresponding author. Fax: 1-215-898-0189. E-mail address: ziyadeh@mail.med.upenn.edu (F.N. Ziyadeh).

The pathogenesis of this extracellular matrix buildup has been convincingly linked to a metabolic cause, namely excessive levels of transforming growth factor- β (TGF- β) in the diabetic kidney [4]. TGF-β not only stimulates the synthesis of extracellular matrix but also inhibits the breakdown of matrix proteins, hence its reputation as a potent profibrotic cytokine. Furthermore, TGF-β is stimulated by high glucose [5], Amadori-modified proteins [6], advanced glycation endproducts [7], and angiotensin II [8], which are all metabolic features of diabetes. In addition, the intrarenal concentration of TGF-β is markedly increased in diabetes, both in animal models [9] and in humans [10]. To prove that increased TGF-β mediates the mesangial sclerosis of diabetic nephropathy, anti-TGF-β antibody therapy has been used to neutralize the renal TGF-β system and thereby prevent glomerular matrix overexpression in the short-term [11] and mesangial matrix expansion in the long-term [12].

In these animal experiments, anti-TGF-β therapy was started concurrently with the onset of diabetes, demonstrating the efficacy of TGF-β blockade in preventing diabetic kidney disease. However, prevention of diabetic nephropathy is not an opportunity that is often afforded to the physician. More often than not, especially in type 2 diabetes, a patient has been hyperglycemic for many years before coming to the attention of a doctor, and by that time diabetic renal disease may have been established. Then the focus shifts from prevention to treatment of disease, with the hopes of arresting or even reversing the progressive course of diabetic nephropathy. One recent study gives hope that the natural history of diabetic renal disease can improve with optimal treatment of diabetes [13]. Eight type 1 diabetic patients with biopsy-proven diabetic nephropathy at baseline had pancreatic allografts that functioned well for many years. After 10 years of true euglycemia, renal function was preserved and, more important, the GBM thickness and index of mesangial expansion reverted to normal. Thus, it appears that aggressive and prolonged glycemic control can reverse the pathological lesions of diabetic nephropathy.

Given the above study and our encouraging results with anti-TGF-β therapy in preventive trials, we investigated whether the same neutralizing anti-TGF-β antibody would reverse the structural abnormalities of established diabetic kidney disease in an experimental model of type 2 diabetes, the obese db/db mouse [14]. This mouse model has a defective hypothalamic receptor for leptin, an adipocyte-derived hormone that normally decreases food intake, increases energy expenditure, and causes weight loss [15]. Because the db/db mouse is resistant to the effects of leptin, it becomes obese and develops insulin-resistance. By eight weeks of age, the db/db mouse is frankly hyperglycemic and has full-blown type 2 diabetes [12]. In another eight weeks (i.e., 16 weeks of age), the mice will have developed diabetic kidney disease with histologic lesions that are reminiscent of diabetic nephropathy in humans [16]. At that time, treatment with the anti-TGF-β antibody was begun to see if inhibiting the renal TGF-β system could reverse GBM thickening and mesangial matrix expansion.

Materials and methods

Experimental animals. Female diabetic db/db mice, with a C57BL/6J genetic background, and their non-diabetic counterparts, db/m mice, were purchased from Jackson Laboratories (Bar Harbor, ME). Blood glucose measurements with a glucometer confirmed that by eight weeks of age, the db/m mice were normoglycemic and the db/db mice were hyperglycemic. After eight more weeks of diabetes, six of the db/db mice were sacrificed to check whether the histological lesions of diabetic nephropathy had developed by 16 weeks of age. At that point, the db/m mice and the remaining db/db mice were treated with either a panselective, neutralizing mouse anti-TGF-β antibody (anti-T) [17] or an isotype-matched, irrelevant mouse antibody (IgG) that served as the

control for anti-T. The antibodies were injected intraperitoneally three times per week for an additional eight weeks, until the mice were 24 weeks of age. This anti-T regimen has been shown to suppress the glomerular expression of TGF- β without any systemic ill effects [12]. In the control arm, 8 non-diabetic *db/m* mice and 10 diabetic *db/db* mice received IgG. In the treatment arm, 10 non-diabetic *db/m* mice and 10 diabetic *db/db* mice received anti-T. At the end of the experiment, the mice were euthanized and the left kidney was removed and immediately frozen in liquid nitrogen.

Mesangial matrix fraction. Portions of the renal cortex were fixed in 10% neutral buffered formalin and then embedded in paraffin. Sections were cut at 5 μm and stained with periodic acid–Schiff (PAS). The coded sections were read by an observer unaware of the experimental protocol. For each mouse, 20 glomeruli were selected at random. Using the computer program, Image-Pro Plus 3.0 (Media Cybernetics, Silver Spring, MD), the area of the PAS-positive material in the mesangium was factored by the glomerular tuft area to arrive at the fraction of mesangial matrix.

 $GBM\ thickness.$ For ultrastructural evaluation, renal cortical tissue was fixed in 3% glutaraldehyde, post-fixed in osmium tetroxide, and stained with uranyl acetate and lead citrate. The specimen was thinsectioned and examined under a transmission electron microscope. Electron micrographic pictures were taken at the $10,000\times$ magnification for each animal. Using the Image-Pro Plus 3.0 program, the thickness of the glomerular basement membrane was measured at random locations and averaged.

Statistical analysis. Data are presented as means \pm SEM. Comparisons between two groups were made with the unpaired Student's t test. P < 0.05 was considered to be statistically significant.

Results and discussion

Glycemic control

At eight weeks of age, the *db/m* mice were all normoglycemic and the *db/db* mice were all hyperglycemic (data not shown). By 24 weeks of age, at the end of the study, the average plasma glucose in the non-diabetic *db/m* group treated with control IgG was 6.94 ± 0.56 mmol/L. In the diabetic *db/db* group treated with IgG, plasma glucose was 35.28 ± 3.17 mmol/L and in the diabetic *db/db* mice treated with anti-T, plasma glucose was 42.50 ± 2.22 mmol/L. This tendency for anti-T treatment to modestly raise the blood glucose concentration in diabetic mice was previously encountered [12].

GBM thickening

Diabetes caused thickening of the GBM. The GBM width increased significantly from 16.64 ± 0.80 nm in the non-diabetic *db/m* mice to 22.61 ± 0.99 nm in the 16-week-old diabetic *db/db* mice (Fig. 1). After diabetic GBM thickening had occurred, eight further weeks of treatment with irrelevant IgG had no effect (GBM width: 21.55 ± 0.78 nm), but treatment with the neutralizing anti-T antibody partly reversed the GBM thickening to 18.40 ± 0.72 nm, P < 0.05 vs. 24-week *db/db*-IgG (Fig. 1). Of note, anti-T antibody did not change the GBM thickness in non-diabetic *db/m* mice (data not shown).

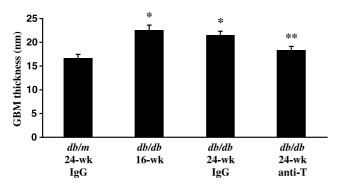


Fig. 1. Eight-week-old diabetic *db/db* mice were allowed to remain hyperglycemic until 16 weeks of age. At that time, selected *db/db* mice (n=6) were sacrificed and the glomerular basement membrane (GBM) thicknesses were measured. The remaining 16-week-old *db/db* mice were then treated with either irrelevant IgG (n=10) or neutralizing anti-TGF- β antibody (anti-T, n=10) until 24 weeks of age. As the control, 16-week-old non-diabetic *db/m* mice were concurrently treated with IgG (n=8) for eight weeks until 24 weeks of age. All mice were then sacrificed and their GBM thicknesses were measured. *P < 0.05 vs. db/dm, **P < 0.05 vs. db/db 16-week or db/db 24-week, IgG.

Mesangial expansion

In the control db/m mice given IgG, the mesangial matrix fraction of the total glomerular tuft area was $4.01 \pm 0.81\%$ (Fig. 2). This percentage was slightly but not significantly decreased by anti-T treatment in the db/m mice $(3.86 \pm 1.23\%)$. With diabetes, however, the percent mesangial matrix was significantly increased to $10.16 \pm 0.66\%$ in the db/db mice at 16 weeks and $9.55 \pm 1.04\%$ in the db/db mice at 24 weeks (Fig. 2). Eight weeks of treatment with control IgG did not affect the extent of mesangial matrix expansion in diabetes, but eight weeks of therapy with the neutralizing anti-TGF- β antibody significantly reduced the mesangial

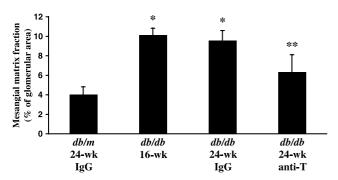


Fig. 2. Eight-week-old diabetic *db/db* mice were allowed to remain hyperglycemic until 16 weeks of age. At that time, selected *db/db* mice (n=6) were sacrificed and the mesangial matrix fractions were calculated. The remaining 16-week-old *db/db* mice were then treated with either irrelevant IgG (n=10) or neutralizing anti-TGF- β antibody (anti-T, n=10) until 24 weeks of age. As the control, 16-week-old non-diabetic *db/m* mice were concurrently treated with IgG (n=8) for eight weeks until 24 weeks of age. All mice were then sacrificed and their mesangial matrix fractions were measured. *P < 0.05 vs. *db/m*, **P < 0.05 vs. *db/db* 16-week or *db/db* 24-week, IgG.

matrix fraction to $6.32 \pm 1.79\%$ (Fig. 2), approaching the non-diabetic norm of $4.01 \pm 0.81\%$.

The impact of these numbers can be appreciated visually by examining the representative light micrographs from each of the four animal groups. A micrograph of the renal cortex from a non-diabetic db/m mouse at 24 weeks shows a normal glomerulus with patent capillary loops (Fig. 3A). This contrasts with the glomerulus from a db/db mouse at 16 weeks of age, after about eight weeks of untreated diabetes. It shows hypertrophy and exuberant mesangial matrix expansion with relative closure of the capillaries (Fig. 3B). These diabetic changes persist in the db/db mice that lived to 24 weeks and were treated with irrelevant control IgG (Fig. 3C). On the other hand, therapy with the anti-TGF-β antibody for eight weeks partially reversed the mesangial matrix accumulation that had been established by 16 weeks of age. The glomerulus contains less PAS-positive matrix material and the capillary loops are more widely open (Fig. 3D).

Importance of TGF- β in diabetic nephropathy

The intrarenal TGF-β system plays a crucial part in the development of pathologic lesions in diabetic nephropathy. Two of the characteristic changes in diabetic kidney disease are glomerular basement membrane thickening and expansion of the mesangium with matrix. These structural lesions have their functional consequences and manifest as worsening proteinuria and progressive renal dysfunction in diabetes [18,19]. The underlying pathogenesis of GBM thickening and mesangial matrix expansion may be mediated in large part by the TGF-β system. After all, TGF-β expression is stimulated by nearly every aspect of the diabetic state in most kidney cell types and TGF-β overactivity drives the development of glomerulosclerosis [4]. As proof of this concept, when TGF-β activity in the db/db mouse was intercepted by systemic treatment with an anti-TGF-β antibody, renal function was preserved, matrix overexpression was normalized, and diffuse diabetic glomerulosclerosis was prevented [12]. Despite the continued hyperglycemia in the diabetic mice, therapy aimed at the TGF-B system alone was sufficient to protect the kidneys from diabetic damage.

Prevention vs. treatment of disease

However, that particular study was designed as a prevention trial in that anti-TGF- β treatment was started concurrently with the onset of type 2 diabetes [12]. Therefore, we designed the current experiment to be more of a therapeutic trial and commenced anti-TGF- β antibody therapy long after the onset of diabetes and after the establishment of diabetic glomerulopathy, evidenced by GBM thickening and mesangial matrix expansion. Even at this late stage, antagonizing the

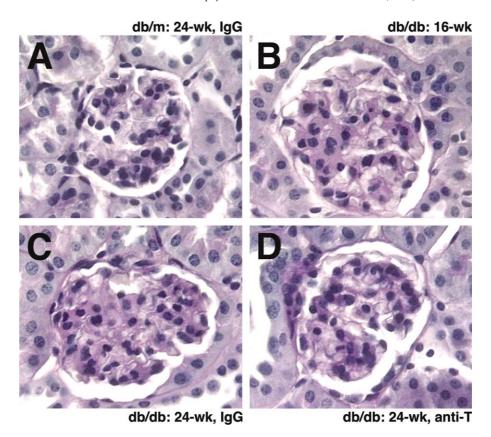


Fig. 3. Paraffin-embedded sections of the renal cortex were stained with periodic acid–Schiff (PAS). Representative light micrographs (magnification: $400\times$) from each of the mouse groups are shown. (A) Normal glomerulus from a non-diabetic *dblm* mouse at 24 weeks. (B) Glomerulus from an untreated *dbldb* mouse at 16 weeks of age, showing hypertrophy and mesangial matrix expansion. (C) Glomerulus from a *dbldb* mouse treated with an eight-week course of IgG from 16 to 24 weeks of age, displaying persistence of diabetic changes. (D) Glomerulus from a *dbldb* mouse treated with eight weeks of anti-TGF- β antibody until 24 weeks of age, depicting partial reversal of mesangial matrix expansion.

intrarenal TGF- β system was able to partially reverse the histologic lesions of diabetic glomerular disease. It should be noted that anti-TGF- β therapy may not improve the course of diabetic proteinuria as our prevention study found that anti-TGF- β antibodies did not confer this type of renoprotection [12]. Nevertheless, it is tempting to speculate that reversal of the structural abnormalities would slow or halt the decline in renal function due to diabetes.

Success with glycemic control in reversing diabetic nephropathy

Before TGF-β, other metabolic abnormalities had been targeted in the hopes of reversing the glomerular lesions of diabetic renal disease. Hyperglycemia was an obvious choice and pancreatic transplantation allowed investigative subjects to achieve long-term normoglycemia. In one of the early studies, pancreas-after-kidney transplantation prevented the progression of modest mesangial expansion and GBM thickening in renal allografts of type 1 diabetic patients [20]. Subsequent studies have looked at simultaneous pancreas-kidney transplants [21–23]. Compared with a kidney transplant

alone, simultaneous pancreatic-kidney transplantation was able to prevent the increased GBM thickness and increased mesangial volume that can develop in diabetic patients after receiving a donor kidney [21,22,24]. Likewise, the mesangial matrix fraction and GBM widening in renal allografts of type 1 diabetic patients have been attenuated by intensive insulin regimens [25]. Moreover, an interesting case report described how both cadaveric kidneys from a donor with proven diabetic nephropathy showed almost complete resolution of diffuse glomerulosclerosis and GBM thickening after being transplanted into non-diabetic recipients [26].

As for whether euglycemia can reverse the diabetic damage in native kidneys, animal work has shown that pancreatic transplantation can both prevent [27] and reverse [28] the mesangial expansion in alloxan-induced diabetic rats. In type 1 diabetic humans, pancreatic transplantation did not improve GBM width or mesangial fractional volume at five years [29] but did normalize these parameters at 10 years [13]. The decadelong time frame may mean that it takes normoglycemia as long to reverse the lesions of diabetic nephropathy as it takes diabetes to effect pathologic changes in the kidney. All of the above studies demonstrate that

excellent glycemic control can effectively reverse the microscopic features of diabetic nephropathy.

Potential non-specific effects of anti-TGF-β antibody

Compared to pancreatic transplantation, anti-TGF- β therapy performed nearly as well at regressing diabetic glomerulopathy, despite the fact that anti-TGF- β antibodies slightly worsened glycemic control. Therefore, the mechanism of anti-T treatment does not involve improvement of glucose metabolism, but we speculate that the combination of optimal glycemic control and anti-TGF- β antibodies would result in a more complete reversal of GBM thickening and mesangial expansion in the db/db mouse.

If not a glucose metabolic effect, perhaps anti-T therapy had a hemodynamic effect that contributed to the reversal of diabetic renal pathology. Anti-TGF-β antibodies can lower the blood pressure by a moderate amount [30]. In as much as blood pressure control with anti-hypertensive medication may cause regression of mesangial glomerulosclerosis [31,32], the mechanism of anti-T could be partly related to its anti-hypertensive effect. The majority of studies, however, have found that anti-hypertensive drugs ameliorate or prevent but do not reverse the histologic changes of diabetic nephropathy [33–38]. Furthermore, the db/db mouse may not develop clinically significant hypertension that could be improved by anti-T, because target organ damage in the form of cardiac hypertrophy was not observed in our previous study at 16 weeks [12]. It seems less likely, then, that a blood pressure-lowering effect explains the reversibility findings in the present study. In the end, anti-TGF-β antibodies probably reversed GBM thickening and mesangial matrix expansion by virtue of its specific antagonism of TGF-B overactivity, blocking a major profibrotic pathway in the diabetic kidney. Regardless of the exact mechanism, anti-TGF-β therapy represents an important and novel advance in the management of diabetic nephropathy.

Clinical considerations of anti-TGF-\beta therapy

In terms of applicability, the therapeutic trial matches the practice of medicine more closely than the preventive trial. With diabetic nephropathy, the physician is often faced with the challenge of treating a patient late in the natural history of the disease, particularly in type 2 diabetes. By the time that microalbuminuria, the earliest clinical marker of incipient nephropathy, is detected, the true extent of diabetic renal disease may already be quite advanced as indicated by the presence of glomerular hypertrophy, GBM thickening, and even mesangial matrix expansion [39,40]. To favorably modify the disease course, the optimal treatment program entails a multidisciplinary approach that tries to achieve tight

glycemic control [41,42], to regulate the blood pressure to 130/80 mm Hg [43], to preferably use ACE inhibitors [44] or angiotensin receptor blockers [45,46], to treat hyperlipidemia [47], to quit smoking [48], and to moderately restrict dietary protein [49]. Unfortunately, even if all these measures are maximized, they may not prevent the progression of diabetic nephropathy to endstage renal disease [50]. Perhaps this serves to emphasize that a multifactorial disease like diabetic nephropathy requires a multipronged treatment strategy. In the fight against diabetic kidney disease, inhibition of the renal TGF-β system can be an effective and complementary addition to the therapeutic armamentarium.

Acknowledgments

The authors thank Dr. Jia Guo for her technical assistance. This study was supported by the Juvenile Diabetes Research Foundation International (S.C., M.I., and F.N.Z.) and the National Institutes of Health (DK-44513, DK-45191, and DK-54608 to F.N.Z.; DK-09993 and DK-61537 to S.C.; Institutional Training Grant DK-07006 to B.J.). M.C.I. is a postdoctoral fellow at the University of Pennsylvania. S.W.H. is a visiting scholar at the University of Pennsylvania and is supported by Yonsei University in Seoul, Korea.

References

- T. McGowan, P. McCue, K. Sharma, Diabetic nephropathy, Clin. Lab. Med. 21 (2001) 111–146.
- [2] B.L. Wajchenberg, E. Sabbaga, J.A. Fonseca, The natural history of diabetic nephropathy in type I diabetes and the role of metabolic control in its prevention, reversibility and clinical course, Acta Diabetol. Lat. 20 (1983) 1–18.
- [3] A.B. Fogo, Mesangial matrix modulation and glomerulosclerosis, Exp. Nephrol. 7 (1999) 147–159.
- [4] S. Chen, S.W. Hong, M.C. Iglesias-de la Cruz, M. Isono, A. Casaretto, F.N. Ziyadeh, The key role of the transforming growth factor-β system in the pathogenesis of diabetic nephropathy, Ren. Fail. 23 (2001) 471–481.
- [5] F.N. Ziyadeh, K. Sharma, M. Ericksen, G. Wolf, Stimulation of collagen gene expression and protein synthesis in murine mesangial cells by high glucose is mediated by autocrine activation of transforming growth factor-β, J. Clin. Invest. 93 (1994) 536–542.
- [6] S. Chen, M.P. Cohen, G.T. Lautenslager, C.W. Shearman, F.N. Ziyadeh, Glycated albumin stimulates TGF-β1 production and protein kinase C activity in glomerular endothelial cells, Kidney Int. 59 (2001) 673–681.
- [7] G. Xiang, R. Schinzel, A. Simm, G. Munch, K. Sebekova, M. Kasper, T. Niwa, C. Schmitz, A. Heidland, Advanced glycation end products (AGEs)-induced expression of TGF-β1 is suppressed by a protease in the tubule cell line LLC-PK₁, Nephrol. Dial. Transplant. 16 (2001) 1562–1569.
- [8] G. Wolf, E. Mueller, R.A. Stahl, F.N. Ziyadeh, Angiotensin IIinduced hypertrophy of cultured murine proximal tubular cells is mediated by endogenous transforming growth factor-β, J. Clin. Invest. 92 (1993) 1366–1372.
- [9] S.N. Wang, R. Hirschberg, Growth factor ultrafiltration in experimental diabetic nephropathy contributes to interstitial fibrosis, Am. J. Physiol. Renal Physiol. 278 (2000) F554–560.
- [10] M. Iwano, A. Kubo, T. Nishino, H. Sato, H. Nishioka, Y. Akai, H. Kurioka, Y. Fujii, M. Kanauchi, H. Shiiki, K. Dohi,

- Quantification of glomerular TGF-β1 mRNA in patients with diabetes mellitus, Kidney Int. 49 (1996) 1120–1126.
- [11] K. Sharma, Y. Jin, J. Guo, F.N. Ziyadeh, Neutralization of TGFβ by anti-TGF-β antibody attenuates kidney hypertrophy and the enhanced extracellular matrix gene expression in STZ-induced diabetic mice, Diabetes 45 (1996) 522–530.
- [12] F.N. Ziyadeh, B.B. Hoffman, D.C. Han, M.C. Iglesias-De La Cruz, S.W. Hong, M. Isono, S. Chen, T.A. McGowan, K. Sharma, Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-β antibody in *dbldb* diabetic mice, Proc. Natl. Acad. Sci. USA 97 (2000) 8015–8020.
- [13] P. Fioretto, M.W. Steffes, D.E. Sutherland, F.C. Goetz, M. Mauer, Reversal of lesions of diabetic nephropathy after pancreas transplantation, N. Engl. J. Med. 339 (1998) 69–75.
- [14] W.L. Chick, R.L. Lavine, A.A. Like, Studies in the diabetic mutant mouse. V. Glucose tolerance in mice homozygous and heterozygous for the diabetes (*db*) gene, Diabetologia 6 (1970) 257–262.
- [15] G. Wolf, S. Chen, D.C. Han, F.N. Ziyadeh, Leptin and renal disease, Am. J. Kidney Dis. 39 (2002) 1–11.
- [16] M.P. Cohen, R.S. Clements, E. Hud, J.A. Cohen, F.N. Ziyadeh, Evolution of renal function abnormalities in the *db/db* mouse that parallels the development of human diabetic nephropathy, Exp. Nephrol. 4 (1996) 166–171.
- [17] C. Lucas, L.N. Bald, B.M. Fendly, M. Mora-Worms, I.S. Figari, E.J. Patzer, M.A. Palladino, The autocrine production of transforming growth factor-β1 during lymphocyte activation. A study with a monoclonal antibody-based ELISA, J. Immunol. 145 (1990) 1415–1422.
- [18] S.M. Mauer, M.W. Steffes, E.N. Ellis, D.E. Sutherland, D.M. Brown, F.C. Goetz, Structural-functional relationships in diabetic nephropathy, J. Clin. Invest. 74 (1984) 1143–1155.
- [19] M.L. Caramori, Y. Kim, C. Huang, A.J. Fish, S.S. Rich, M.E. Miller, G. Russell, M. Mauer, Cellular basis of diabetic nephropathy: 1. Study design and renal structural-functional relationships in patients with long-standing type 1 diabetes, Diabetes 51 (2002) 506–513.
- [20] R.W. Bilous, S.M. Mauer, D.E. Sutherland, J.S. Najarian, F.C. Goetz, M.W. Steffes, The effects of pancreas transplantation on the glomerular structure of renal allografts in patients with insulin-dependent diabetes, N. Engl. J. Med. 321 (1989) 80–85.
- [21] S.O. Bohman, G. Tyden, H. Wilczek, G. Lundgren, G. Jaremko, R. Gunnarsson, J. Ostman, C.G. Groth, Prevention of kidney graft diabetic nephropathy by pancreas transplantation in man, Diabetes 34 (1985) 306–308.
- [22] H.E. Wilczek, G. Jaremko, G. Tyden, C.G. Groth, Evolution of diabetic nephropathy in kidney grafts. Evidence that a simultaneously transplanted pancreas exerts a protective effect, Transplantation 59 (1995) 51–57.
- [23] G. Nyberg, H. Holdaas, I.B. Brekke, A. Hartmenn, G. Norden, M. Olausson, R. Østerby, Glomerular ultrastructure in kidneys transplanted simultaneously with a segmental pancreas to patients with type 1 diabetes, Nephrol. Dial. Transplant. 11 (1996) 1029– 1033.
- [24] S.M. Mauer, M.W. Steffes, J. Connett, J.S. Najarian, D.E. Sutherland, J. Barbosa, The development of lesions in the glomerular basement membrane and mesangium after transplantation of normal kidneys to diabetic patients, Diabetes 32 (1983) 948–952
- [25] J. Barbosa, M.W. Steffes, D.E. Sutherland, J.E. Connett, K.V. Rao, S.M. Mauer, Effect of glycemic control on early diabetic renal lesions. A 5-year randomized controlled clinical trial of insulin-dependent diabetic kidney transplant recipients, JAMA 272 (1994) 600–606.

- [26] G.M. Abouna, M.S. Al-Adnani, G.D. Kremer, S.A. Kumar, S.K. Daddah, G. Kusma, Reversal of diabetic nephropathy in human cadaveric kidneys after transplantation into non-diabetic recipients, Lancet 2 (1983) 1274–1276.
- [27] L.A. Orloff, M.S. Orloff, S.L. Orloff, M.J. Orloff, Lifelong prevention of mesangial enlargement by whole pancreas transplantation in rats with diabetes mellitus, Arch. Surg. 134 (1999) 889–897
- [28] M.J. Orloff, N. Yamanaka, G.E. Greenleaf, Y.T. Huang, D.G. Huang, X.S. Leng, Reversal of mesangial enlargement in rats with long-standing diabetes by whole pancreas transplantation, Diabetes 35 (1986) 347–354.
- [29] P. Fioretto, S.M. Mauer, R.W. Bilous, F.C. Goetz, D.E. Sutherland, M.W. Steffes, Effects of pancreas transplantation on glomerular structure in insulin-dependent diabetic patients with their own kidneys, Lancet 342 (1993) 1193–1196.
- [30] A.J. Dahly, K.M. Hoagland, A.K. Flasch, S. Jha, S.R. Ledbetter, R.J. Roman, Antihypertensive effects of chronic anti-TGF-β antibody therapy in Dahl S rats, Am. J. Physiol. Regul. Integr. Comp. Physiol. 283 (2002) R757–767.
- [31] A.S. Reddi, V.R. Nimmagadda, A. Lefkowitz, H.R. Kuo, J.S. Bollineni, Effect of antihypertensive therapy on renal injury in type 2 diabetic rats with hypertension, Hypertension 36 (2000) 233–238.
- [32] J.L. Wilkinson-Berka, N.J. Gibbs, M.E. Cooper, S.L. Skinner, D.J. Kelly, Renoprotective and anti-hypertensive effects of combined valsartan and perindopril in progressive diabetic nephropathy in the transgenic (mRen-2)27 rat, Nephrol. Dial. Transplant. 16 (2001) 1343–1349.
- [33] S.A. Mifsud, S.L. Skinner, M.E. Cooper, D.J. Kelly, J.L. Wilkinson-Berka, Effects of low-dose and early versus late perindopril treatment on the progression of severe diabetic nephropathy in (mREN-2)27 rats, J. Am. Soc. Nephrol. 13 (2002) 684–692.
- [34] K.E. White, N. Pinel, D.J. Cordonnier, R.W. Bilous, Does ACE inhibition slow progression of glomerulopathy in patients with type 2 diabetes mellitus?, Diabet. Med. 18 (2001) 933–936.
- [35] Effect of 3 years of antihypertensive therapy on renal structure in type 1 diabetic patients with albuminuria: the European Study for the Prevention of Renal Disease in Type 1 Diabetes (ESPRIT), Diabetes 50 (2001) 843–850.
- [36] D.J. Cordonnier, N. Pinel, C. Barro, M. Maynard, P. Zaoui, S. Halimi, B.H. de Ligny, Y. Reznic, D. Simon, R.W. Bilous, Expansion of cortical interstitium is limited by converting enzyme inhibition in type 2 diabetic patients with glomerulosclerosis. The Diabiopsies Group, J. Am. Soc. Nephrol. 10 (1999) 1253–1263.
- [37] S. Rudberg, R. Østerby, H.J. Bangstad, G. Dahlquist, B. Persson, Effect of angiotensin converting enzyme inhibitor or β-blocker on glomerular structural changes in young microalbuminuric patients with type I (insulin-dependent) diabetes mellitus, Diabetologia 42 (1999) 589–595.
- [38] R.C. O'Brien, M.E. Cooper, G. Jerums, A.E. Doyle, The effects of perindopril and triple therapy in a normotensive model of diabetic nephropathy, Diabetes 42 (1993) 604–609.
- [39] H.J. Bangstad, R. Østerby, K. Dahl-Jorgensen, K.J. Berg, A. Hartmann, G. Nyberg, S. Frahm Bjorn, K.F. Hanssen, Early glomerulopathy is present in young, type 1 (insulin-dependent) diabetic patients with microalbuminuria, Diabetologia 36 (1993) 523–529
- [40] T. Moriya, K. Tanaka, R. Moriya, Glomerular structural changes and structural-functional relationships at early stage of diabetic nephropathy in Japanese type 2 diabetic patients, Med. Electron Microsc. 33 (2000) 115–122.
- [41] The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group, N. Engl. J. Med. 329 (1993) 977–986.

- [42] Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group, Lancet 352 (1998) 837–853.
- [43] G.L. Bakris, M. Williams, L. Dworkin, W.J. Elliott, M. Epstein, R. Toto, K. Tuttle, J. Douglas, W. Hsueh, J. Sowers, Preserving renal function in adults with hypertension and diabetes: a consensus approach. National Kidney Foundation Hypertension and Diabetes Executive Committees Working Group, Am. J. Kidney Dis. 36 (2000) 646–661.
- [44] E.J. Lewis, L.G. Hunsicker, R.P. Bain, R.D. Rohde, The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group, N. Engl. J. Med. 329 (1993) 1456–1462.
- [45] B.M. Brenner, M.E. Cooper, D. de Zeeuw, W.F. Keane, W.E. Mitch, H.H. Parving, G. Remuzzi, S.M. Snapinn, Z. Zhang, S. Shahinfar, Effects of losartan on renal and cardiovascular

- outcomes in patients with type 2 diabetes and nephropathy, N. Engl. J. Med. 345 (2001) 861-869.
- [46] E.J. Lewis, L.G. Hunsicker, W.R. Clarke, T. Berl, M.A. Pohl, J.B. Lewis, E. Ritz, R.C. Atkins, R. Rohde, I. Raz, Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes, N. Engl. J. Med. 345 (2001) 851–860.
- [47] H. Gin, V. Rigalleau, M. Aparicio, Lipids, protein intake, and diabetic nephropathy, Diabetes Metab. 26 (Suppl. 4) (2000) 45–53.
- [48] S.R. Orth, E. Ritz, R.W. Schrier, The renal risks of smoking, Kidney Int. 51 (1997) 1669–1677.
- [49] H.P. Hansen, E. Tauber-Lassen, B.R. Jensen, H.H. Parving, Effect of dietary protein restriction on prognosis in patients with diabetic nephropathy, Kidney Int. 62 (2002) 220–228.
- [50] P. Gaede, P. Vedel, H.H. Parving, O. Pedersen, Intensified multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: the Steno type 2 randomised study, Lancet 353 (1999) 617–622.